## Uses of Classcom.perisic.ring.RingElt

Uses of RingElt in com.perisic.ring

Methods in com.perisic.ring that return RingElt
` RingElt` `Matrix2x2Ring.a(RingElt m)`
Returns the first coefficient (element) of the matrix as an element of the base ring.
` RingElt` ```UniversalRing.add(RingElt a, RingElt b)```
`abstract  RingElt` ```Ring.add(RingElt a, RingElt b)```
The addition a + b of two ring elements a and b.
` RingElt` ```RationalField.add(RingElt a, RingElt b)```
Returns a + b.
` RingElt` ```QuotientField.add(RingElt a, RingElt b)```
` RingElt` ```PolynomialRing.add(RingElt p, RingElt q)```
Returns the sum of the parameters.
` RingElt` ```ModularRing.add(RingElt a, RingElt b)```
` RingElt` ```ModularIntegerRing.add(RingElt a, RingElt b)```
Returns a + b mod m.
` RingElt` ```Matrix2x2Ring.add(RingElt m1, RingElt m2)```
Returns the sum of a 2*2 matrix, m1 + m2.
` RingElt` ```IntegerRing.add(RingElt a, RingElt b)```
Returns the sum of the parameters.
` RingElt` ```F2Field.add(RingElt a, RingElt b)```
The addition a + b mod 2.
` RingElt` ```DoubleField.add(RingElt a, RingElt b)```
` RingElt` `Matrix2x2Ring.b(RingElt m)`
Returns the second element of the matrix as an element of the base ring.
` RingElt` `Matrix2x2Ring.c(RingElt m)`
Returns the third element of the matrix as an element of the base ring.
` RingElt` ```RationalField.construct(java.math.BigInteger numerator, java.math.BigInteger denominator)```
Returns numerator/denominator.
` RingElt` ```PolynomialRing.construct(int[] exponents, java.lang.Object[] coefficients)```
Returns a Polynomial by matching exponents to coefficients.
` RingElt` ```PolynomialRing.construct(int exponent, java.lang.Object coefficient)```
Returns the Polynomial coefficient * X^exponent, where X is the variable of this PolynomialRing.
` RingElt` ```QuotientField.construct(RingElt numerator, RingElt denominator)```
Constructs numerator/denominator.
` RingElt` ```Matrix2x2Ring.construct(RingElt a, RingElt b, RingElt c, RingElt d)```
constructs the elements of a 2*2 matrix, a, b, c, and d.
` RingElt` `PolynomialRing.contents(RingElt b)`
Returns the contents of b.
` RingElt` `Matrix2x2Ring.d(RingElt m)`
Returns the fourth element of the matrix as an element of the base ring.
` RingElt` `QuotientField.denominator(RingElt b)`
Returns the denominator of b as an element of the base ring.
` RingElt` `Matrix2x2Ring.det(RingElt m1)`
Returns the determinant of m.
` RingElt` ```Ring.div(RingElt a, RingElt b)```
Computes a/b.
` RingElt[]` ```PolynomialRing.divmod(RingElt p, RingElt q)```
Returns an array { p/q, p%q }.
` RingElt` ```UniversalRing.ediv(RingElt a, RingElt b)```
Euclidian division.
` RingElt` ```Ring.ediv(RingElt a, RingElt b)```
Returns a div b (euclidian division).
` RingElt` ```PolynomialRing.ediv(RingElt p, RingElt q)```
Returns p/q (Euclidian division).
` RingElt` ```IntegerRing.ediv(RingElt a, RingElt b)```
Euclidian division.
` RingElt` ```Ring.evaluatePolynomial(RingElt p, RingElt b)```
Evaluates the Polynomial p at b.
` RingElt` ```UniversalPolynomialRing.evaluatePolynomial(RingElt p, java.lang.String[] var, RingElt[] b)```
Evaluates the polynomial p at the variables var[i] with the values b[i].
` RingElt` ```UniversalPolynomialRing.evaluatePolynomial(RingElt p, java.lang.String var, RingElt b)```
Evaluates the Polynomial p (which may be defined over more than one variable) at b for the variable var.
` RingElt[]` ```PolynomialRing.extendedGcd(RingElt a, RingElt b)```
Extended greatest common divisor of the parameters.
` RingElt` ```UniversalRing.gcd(RingElt a, RingElt b)```
gcd.
` RingElt` ```Ring.gcd(RingElt a, RingElt b)```
Returns gcd(a,b).
` RingElt` ```PolynomialRing.gcd(RingElt p, RingElt q)```
Greatest common divisor of the parameters.
` RingElt` ```PolynomialRing.getCoefficientAt(int i, RingElt b)```
Returns the coefficient for x^i of b (or null), where b is considered as an univariate polynomial over x.
`static RingElt` ```CyclotomicField.getCyclotomicPolynomial(Ring F, int n, java.lang.String variable)```
Constructs the `n`-th cyclotomic polynomial over the ring F as a polynomial in the variable `variable`.
` RingElt` `ModularRing.getModulus()`
Returns f if this is R/fR.
` RingElt` ```PolynomialRing.getTrueCoefficientAt(int i, RingElt b)```
Returns the coefficient for x^i of b, where b is considered as an univariate polynomial over x.
` RingElt` `ModularRing.getValue(RingElt b)`
Returns the value of b as an element of R.
` RingElt` `PolynomialRing.globalLeadingCoefficient(RingElt b)`
Determins recursively the global leading Coefficient of the polynomial over all variables.
` RingElt` `UniversalRing.inv(RingElt a)`
Multiplicative Inverse.
` RingElt` `Ring.inv(RingElt b)`
Returns b^-1.
` RingElt` `RationalField.inv(RingElt b)`
Returns the multiplicative inverse.
` RingElt` `QuotientField.inv(RingElt b)`
Returns b^-1.
` RingElt` `PolynomialRing.inv(RingElt b)`
Returns 1/b as an element of this Ring.
` RingElt` `ModularRing.inv(RingElt b)`
Returns the inverse b.
` RingElt` `ModularIntegerRing.inv(RingElt b)`
Returns b^-1 mod m.
` RingElt` `Matrix2x2Ring.inv(RingElt m1)`
Returns the inverse of a matrix m1.
` RingElt` `IntegerRing.inv(RingElt b)`
Returns b for b == 1 and b == -1.
` RingElt` `F2Field.inv(RingElt b)`
Returns b^-1.
` RingElt` `DoubleField.inv(RingElt a)`
Multiplicative Inverse.
` RingElt` `PolynomialRing.leadingCoefficient(RingElt b)`
The leading coefficient of b, where b is considered as an univariate polynomial.
` RingElt` `Ring.map(java.math.BigInteger a)`
Maps a into the Ring.
` RingElt` `F2Field.map(boolean b)`
Maps false to 0 and true to 1.
` RingElt` `DoubleField.map(double r)`
Maps a double to this field.
` RingElt` `Ring.map(int a)`
Maps a into the Ring.
` RingElt` ```UniversalCyclotomicField.map(int n, java.lang.String str)```
maps the string str into the n-th cyclotomic field
` RingElt` `Ring.map(java.lang.Object a)`
By default, maps a into the Ring using appropriate methods if a is a RingElt, a BigInteger or a String.
` RingElt` `UniversalRing.map(RingElt a)`
Maps a RingElt using the findRing() method with one parameter.
` RingElt` `UniversalCyclotomicField.map(RingElt r)`
The following Rings are mapped: Cyclotomic fields, where the variable is of the form z* where z ist the preifx of the variable and * is a number; Polynomial rings and Quotient fields over Polynomial rings where the variables are of the form z*; the usual suspects (Z, Q).
` RingElt` `Ring.map(RingElt a)`
Maps a into the Ring.
` RingElt` `RationalField.map(RingElt a)`
Maps Ring.Z elements and into this.
` RingElt` `QuotientField.map(RingElt a)`
If a is an element of another QuotientRing, numerator and denominator are mapped to B.
` RingElt` `PolynomialRing.map(RingElt a)`
Maps a RingElt of various other rings to this ring.
` RingElt` `ModularRing.map(RingElt a)`
If the ring of `a` is a quotient field we map the quotient of numerator and denominator.
` RingElt` `ModularIntegerRing.map(RingElt a)`
Performs the ususal map as in Ring.map(RingElt).
` RingElt` `Matrix2x2Ring.map(RingElt m)`
Maps a 2x2 matrix m into this.
` RingElt` `F2Field.map(RingElt b)`
If b is a modular integer ring, such that the modulus maps to 0, the value of b is mapped to F2.
` RingElt` `CyclotomicField.map(RingElt a)`
If the ring of the argument is of a dth cyclotomic field and d a divisor of n we embed via the mapping zd -> znn/d where zn denotes a fixed nth root of unity.
` RingElt` `UniversalRing.map(java.lang.String str)`
Maps a string to the ring obtained by findRing() without parameter.
` RingElt` `UniversalPolynomialRing.map(java.lang.String str)`
All Java identifiers are allowed as variables.
` RingElt` `UniversalCyclotomicField.map(java.lang.String str)`
Strings denoting Rational functions (elements of Quotient fields of Polynomial rings) over variables of the form z* where z ist the preifx of the variable and * is a number; are mapped.
` RingElt` `Ring.map(java.lang.String str)`
Maps a String into the Ring.
` RingElt` `RationalField.map(java.lang.String a)`
Maps the String a of the form xxxxx/yyyyy and xxxxxx into this field.
` RingElt` `QuotientField.map(java.lang.String a)`
Maps the String a into this Ring.
` RingElt` `PolynomialRing.map(java.lang.String a)`
Maps a String to an element of this PolynomialRing.
` RingElt` `ModularRing.map(java.lang.String str)`
Maps str first into R, then into this.
` RingElt` `Matrix2x2Ring.map(java.lang.String str)`
Maps a matrix of the form { { xxx, yyy } { uuu, vvv } } into this ring.
` RingElt` `DoubleField.map(java.lang.String str)`
Returns str as a DoubleField.
` RingElt` ```UniversalRing.mod(RingElt a, RingElt b)```
Modular computation.
` RingElt` ```Ring.mod(RingElt a, RingElt m)```
Returns a % m (euclidian division, a modulo m).
` RingElt` ```PolynomialRing.mod(RingElt p, RingElt q)```
Returns p%q (remainder of Euclidian division).
` RingElt` ```IntegerRing.mod(RingElt a, RingElt b)```
Remainder of Euclidian division.
` RingElt` ```UniversalRing.mult(RingElt a, RingElt b)```
Multiplication.
`abstract  RingElt` ```Ring.mult(RingElt a, RingElt b)```
The mutiplicaton a * b of two ring elements a and b.
` RingElt` ```RationalField.mult(RingElt a, RingElt b)```
Returns a * b.
` RingElt` ```QuotientField.mult(RingElt a, RingElt b)```
Multiplication a * b.
` RingElt` ```PolynomialRing.mult(RingElt p, RingElt q)```
Returns the product of the parameters.
` RingElt` ```ModularRing.mult(RingElt a, RingElt b)```
Multiplication.
` RingElt` ```ModularIntegerRing.mult(RingElt a, RingElt b)```
Returns a * b mod m.
` RingElt` ```Matrix2x2Ring.mult(RingElt m1, RingElt m2)```
Return the product of two 2*2 matrices, m1 * m2.
` RingElt` ```IntegerRing.mult(RingElt a, RingElt b)```
Returns the product of the parameters.
` RingElt` ```F2Field.mult(RingElt a, RingElt b)```
The multiplicaton a * b mod 2.
` RingElt` ```DoubleField.mult(RingElt a, RingElt b)```
Multiplication.
` RingElt` `UniversalRing.neg(RingElt b)`
`abstract  RingElt` `Ring.neg(RingElt a)`
Returns the additive inverse -a of an ring element a.
` RingElt` `RationalField.neg(RingElt b)`
Returns -b.
` RingElt` `QuotientField.neg(RingElt b)`
Returns -b.
` RingElt` `PolynomialRing.neg(RingElt b)`
Returns -b as an element of this Ring.
` RingElt` `ModularRing.neg(RingElt b)`
Returns -b.
` RingElt` `ModularIntegerRing.neg(RingElt b)`
Returns -b mod m.
` RingElt` `Matrix2x2Ring.neg(RingElt m1)`
Returns the negation of a matrix, -m1.
` RingElt` `IntegerRing.neg(RingElt b)`
Returns -b as an element of this Ring.
` RingElt` `F2Field.neg(RingElt a)`
Returns -a mod 2.
` RingElt` `DoubleField.neg(RingElt b)`
` RingElt` `PolynomialRing.normalize(RingElt b)`
Returns a normal form for the polynomial b.
` RingElt` `QuotientField.numerator(RingElt b)`
Returns the numerator of b as an element of the base ring.
` RingElt` `UniversalRing.one()`
The 1 of the ring.
` RingElt` `Ring.one()`
Returns the 1 of the ring.
` RingElt` `RationalField.one()`
Returns 1.
` RingElt` `QuotientField.one()`
Returns 1.
` RingElt` `PolynomialRing.one()`
Returns 1 as an element of this Ring.
` RingElt` `ModularRing.one()`
Returns 1.
` RingElt` `ModularIntegerRing.one()`
Returns 1.
` RingElt` `Matrix2x2Ring.one()`
Returns the Identity matrix, I = {{ 1, 0 } { 0, 1}}.
` RingElt` `IntegerRing.one()`
Returns 1 as an element of this Ring.
` RingElt` `F2Field.one()`
Returns the 1 of the ring.
` RingElt` `DoubleField.one()`
The 1 of the field.
` RingElt` ```Ring.pow(RingElt b, java.math.BigInteger a)```
Returns b^a.
` RingElt` ```Ring.pow(RingElt b, int a)```
Returns b^a.
` RingElt` `PolynomialRing.primitivePart(RingElt a)`
Returns b/contents(b).
` RingElt` `UniversalPolynomialRing.reduceVariables(RingElt p)`
Reduces the polynomial into a polynomial of the polynomial ring with the fewest variables.
` RingElt` ```Ring.sub(RingElt a, RingElt b)```
Returns a - b.
` RingElt` ```UniversalRing.tdiv(RingElt a, RingElt b)```
True division.
` RingElt` ```Ring.tdiv(RingElt a, RingElt b)```
Computes a/b (true division).
` RingElt` ```PolynomialRing.tdiv(RingElt p, RingElt q)```
Returns p/q (true division).
` RingElt` ```ModularIntegerRing.tdiv(RingElt a, RingElt b)```
The same as div(a,b).
` RingElt` ```IntegerRing.tdiv(RingElt a, RingElt b)```
True division.
` RingElt` `Matrix2x2Ring.trace(RingElt m1)`
Returns the trace of m.
` RingElt` `UniversalRing.zero()`
The 0 of the ring.
`abstract  RingElt` `Ring.zero()`
Returns the 0 of the ring.
` RingElt` `RationalField.zero()`
Returns 0.
` RingElt` `QuotientField.zero()`
Returns 0.
` RingElt` `PolynomialRing.zero()`
Returns 0 as an element of this Ring.
` RingElt` `ModularRing.zero()`
Returns 0.
` RingElt` `ModularIntegerRing.zero()`
Returns 0.
` RingElt` `Matrix2x2Ring.zero()`
Returns the zero matrix { { 0, 0 } { 0, 0 }}.
` RingElt` `IntegerRing.zero()`
Returns 0 as an element of this Ring.
` RingElt` `F2Field.zero()`
Returns 0 mod 2.
` RingElt` `DoubleField.zero()`
The 0 of the field.

Methods in com.perisic.ring with parameters of type RingElt
` RingElt` `Matrix2x2Ring.a(RingElt m)`
Returns the first coefficient (element) of the matrix as an element of the base ring.
` RingElt` ```UniversalRing.add(RingElt a, RingElt b)```
`abstract  RingElt` ```Ring.add(RingElt a, RingElt b)```
The addition a + b of two ring elements a and b.
` RingElt` ```RationalField.add(RingElt a, RingElt b)```
Returns a + b.
` RingElt` ```QuotientField.add(RingElt a, RingElt b)```
` RingElt` ```PolynomialRing.add(RingElt p, RingElt q)```
Returns the sum of the parameters.
` RingElt` ```ModularRing.add(RingElt a, RingElt b)```
` RingElt` ```ModularIntegerRing.add(RingElt a, RingElt b)```
Returns a + b mod m.
` RingElt` ```Matrix2x2Ring.add(RingElt m1, RingElt m2)```
Returns the sum of a 2*2 matrix, m1 + m2.
` RingElt` ```IntegerRing.add(RingElt a, RingElt b)```
Returns the sum of the parameters.
` RingElt` ```F2Field.add(RingElt a, RingElt b)```
The addition a + b mod 2.
` RingElt` ```DoubleField.add(RingElt a, RingElt b)```
` RingElt` `Matrix2x2Ring.b(RingElt m)`
Returns the second element of the matrix as an element of the base ring.
` RingElt` `Matrix2x2Ring.c(RingElt m)`
Returns the third element of the matrix as an element of the base ring.
` RingElt` ```QuotientField.construct(RingElt numerator, RingElt denominator)```
Constructs numerator/denominator.
` RingElt` ```Matrix2x2Ring.construct(RingElt a, RingElt b, RingElt c, RingElt d)```
constructs the elements of a 2*2 matrix, a, b, c, and d.
` RingElt` `PolynomialRing.contents(RingElt b)`
Returns the contents of b.
` RingElt` `Matrix2x2Ring.d(RingElt m)`
Returns the fourth element of the matrix as an element of the base ring.
` int` `PolynomialRing.degree(RingElt b)`
The degree of b, where b is considered as an univariate polynomial.
` RingElt` `QuotientField.denominator(RingElt b)`
Returns the denominator of b as an element of the base ring.
`static java.math.BigInteger` `RationalField.denominatorToBigInteger(RingElt b)`
Returns the denominator s if b = r/s.
` RingElt` `Matrix2x2Ring.det(RingElt m1)`
Returns the determinant of m.
` RingElt` ```Ring.div(RingElt a, RingElt b)```
Computes a/b.
` RingElt[]` ```PolynomialRing.divmod(RingElt p, RingElt q)```
Returns an array { p/q, p%q }.
` RingElt` ```UniversalRing.ediv(RingElt a, RingElt b)```
Euclidian division.
` RingElt` ```Ring.ediv(RingElt a, RingElt b)```
Returns a div b (euclidian division).
` RingElt` ```PolynomialRing.ediv(RingElt p, RingElt q)```
Returns p/q (Euclidian division).
` RingElt` ```IntegerRing.ediv(RingElt a, RingElt b)```
Euclidian division.
` java.lang.String` `Ring.eltToString(RingElt a)`
Returns the Ring element a as a String.
` java.lang.String` `ModularRing.eltToString(RingElt a)`
Returns a in the form "a" or "a mod f" depending on the value of hideMod.
` java.lang.String` `Matrix2x2Ring.eltToString(RingElt m)`
Returns the matrix m as a String.
` boolean` ```Ring.equal(RingElt a, RingElt b)```
True if a == b.
` boolean` `UniversalRing.equalZero(RingElt b)`
true if b == 0.
`abstract  boolean` `Ring.equalZero(RingElt a)`
Returns true if a == 0.
` boolean` `RationalField.equalZero(RingElt b)`
True if b == 0.
` boolean` `QuotientField.equalZero(RingElt b)`
True if b == 0.
` boolean` `PolynomialRing.equalZero(RingElt b)`
Returns true if b is equals to zero, false otherwise.
` boolean` `ModularRing.equalZero(RingElt b)`
true if b == 0, false otherwise.
` boolean` `ModularIntegerRing.equalZero(RingElt b)`
True if b == 0, false otherwise.
` boolean` `Matrix2x2Ring.equalZero(RingElt m1)`
Returns true if the matrix m1 == 0.
` boolean` `IntegerRing.equalZero(RingElt b)`
Returns true if b is equals to zero, false otherwise.
` boolean` `F2Field.equalZero(RingElt a)`
Returns true if a == 0.
` boolean` `DoubleField.equalZero(RingElt b)`
true if b == 0.
` RingElt` ```Ring.evaluatePolynomial(RingElt p, RingElt b)```
Evaluates the Polynomial p at b.
` RingElt` ```UniversalPolynomialRing.evaluatePolynomial(RingElt p, java.lang.String[] var, RingElt[] b)```
Evaluates the polynomial p at the variables var[i] with the values b[i].
` RingElt` ```UniversalPolynomialRing.evaluatePolynomial(RingElt p, java.lang.String[] var, RingElt[] b)```
Evaluates the polynomial p at the variables var[i] with the values b[i].
` RingElt` ```UniversalPolynomialRing.evaluatePolynomial(RingElt p, java.lang.String var, RingElt b)```
Evaluates the Polynomial p (which may be defined over more than one variable) at b for the variable var.
` RingElt[]` ```PolynomialRing.extendedGcd(RingElt a, RingElt b)```
Extended greatest common divisor of the parameters.
`abstract  Ring` `UniversalRing.findRing(RingElt a)`
A suitable ring able to map a.
` Ring` `UniversalPolynomialRing.findRing(RingElt a)`
The ring over the coefficient ring with the variables of a.getRing().
` Ring` `UniversalCyclotomicField.findRing(RingElt a)`
Returns the ring of the argument a if this a Cyclotomic field or Q.
`abstract  Ring` ```UniversalRing.findRing(RingElt a, RingElt b)```
A suitable ring able to map a and b.
` Ring` ```UniversalPolynomialRing.findRing(RingElt a, RingElt b)```
The result is the coefficient ring over the variables of a.getRing() and the variables of b.getRing().
` Ring` ```UniversalCyclotomicField.findRing(RingElt a, RingElt b)```
Returns cyaclotomic field which contains both a and b.
` RingElt` ```UniversalRing.gcd(RingElt a, RingElt b)```
gcd.
` RingElt` ```Ring.gcd(RingElt a, RingElt b)```
Returns gcd(a,b).
` RingElt` ```PolynomialRing.gcd(RingElt p, RingElt q)```
Greatest common divisor of the parameters.
` RingElt` ```PolynomialRing.getCoefficientAt(int i, RingElt b)```
Returns the coefficient for x^i of b (or null), where b is considered as an univariate polynomial over x.
` RingElt` ```PolynomialRing.getTrueCoefficientAt(int i, RingElt b)```
Returns the coefficient for x^i of b, where b is considered as an univariate polynomial over x.
` RingElt` `ModularRing.getValue(RingElt b)`
Returns the value of b as an element of R.
` RingElt` `PolynomialRing.globalLeadingCoefficient(RingElt b)`
Determins recursively the global leading Coefficient of the polynomial over all variables.
` RingElt` `UniversalRing.inv(RingElt a)`
Multiplicative Inverse.
` RingElt` `Ring.inv(RingElt b)`
Returns b^-1.
` RingElt` `RationalField.inv(RingElt b)`
Returns the multiplicative inverse.
` RingElt` `QuotientField.inv(RingElt b)`
Returns b^-1.
` RingElt` `PolynomialRing.inv(RingElt b)`
Returns 1/b as an element of this Ring.
` RingElt` `ModularRing.inv(RingElt b)`
Returns the inverse b.
` RingElt` `ModularIntegerRing.inv(RingElt b)`
Returns b^-1 mod m.
` RingElt` `Matrix2x2Ring.inv(RingElt m1)`
Returns the inverse of a matrix m1.
` RingElt` `IntegerRing.inv(RingElt b)`
Returns b for b == 1 and b == -1.
` RingElt` `F2Field.inv(RingElt b)`
Returns b^-1.
` RingElt` `DoubleField.inv(RingElt a)`
Multiplicative Inverse.
`static boolean` `RationalField.isIntegral(RingElt b)`
true if denominator of b equals 1.
` boolean` `QuotientField.isIntegral(RingElt b)`
true if the denominator is one.
` RingElt` `PolynomialRing.leadingCoefficient(RingElt b)`
The leading coefficient of b, where b is considered as an univariate polynomial.
` RingElt` `UniversalRing.map(RingElt a)`
Maps a RingElt using the findRing() method with one parameter.
` RingElt` `UniversalCyclotomicField.map(RingElt r)`
The following Rings are mapped: Cyclotomic fields, where the variable is of the form z* where z ist the preifx of the variable and * is a number; Polynomial rings and Quotient fields over Polynomial rings where the variables are of the form z*; the usual suspects (Z, Q).
` RingElt` `Ring.map(RingElt a)`
Maps a into the Ring.
` RingElt` `RationalField.map(RingElt a)`
Maps Ring.Z elements and into this.
` RingElt` `QuotientField.map(RingElt a)`
If a is an element of another QuotientRing, numerator and denominator are mapped to B.
` RingElt` `PolynomialRing.map(RingElt a)`
Maps a RingElt of various other rings to this ring.
` RingElt` `ModularRing.map(RingElt a)`
If the ring of `a` is a quotient field we map the quotient of numerator and denominator.
` RingElt` `ModularIntegerRing.map(RingElt a)`
Performs the ususal map as in Ring.map(RingElt).
` RingElt` `Matrix2x2Ring.map(RingElt m)`
Maps a 2x2 matrix m into this.
` RingElt` `F2Field.map(RingElt b)`
If b is a modular integer ring, such that the modulus maps to 0, the value of b is mapped to F2.
` RingElt` `CyclotomicField.map(RingElt a)`
If the ring of the argument is of a dth cyclotomic field and d a divisor of n we embed via the mapping zd -> znn/d where zn denotes a fixed nth root of unity.
` RingElt` ```UniversalRing.mod(RingElt a, RingElt b)```
Modular computation.
` RingElt` ```Ring.mod(RingElt a, RingElt m)```
Returns a % m (euclidian division, a modulo m).
` RingElt` ```PolynomialRing.mod(RingElt p, RingElt q)```
Returns p%q (remainder of Euclidian division).
` RingElt` ```IntegerRing.mod(RingElt a, RingElt b)```
Remainder of Euclidian division.
` RingElt` ```UniversalRing.mult(RingElt a, RingElt b)```
Multiplication.
`abstract  RingElt` ```Ring.mult(RingElt a, RingElt b)```
The mutiplicaton a * b of two ring elements a and b.
` RingElt` ```RationalField.mult(RingElt a, RingElt b)```
Returns a * b.
` RingElt` ```QuotientField.mult(RingElt a, RingElt b)```
Multiplication a * b.
` RingElt` ```PolynomialRing.mult(RingElt p, RingElt q)```
Returns the product of the parameters.
` RingElt` ```ModularRing.mult(RingElt a, RingElt b)```
Multiplication.
` RingElt` ```ModularIntegerRing.mult(RingElt a, RingElt b)```
Returns a * b mod m.
` RingElt` ```Matrix2x2Ring.mult(RingElt m1, RingElt m2)```
Return the product of two 2*2 matrices, m1 * m2.
` RingElt` ```IntegerRing.mult(RingElt a, RingElt b)```
Returns the product of the parameters.
` RingElt` ```F2Field.mult(RingElt a, RingElt b)```
The multiplicaton a * b mod 2.
` RingElt` ```DoubleField.mult(RingElt a, RingElt b)```
Multiplication.
` RingElt` `UniversalRing.neg(RingElt b)`
`abstract  RingElt` `Ring.neg(RingElt a)`
Returns the additive inverse -a of an ring element a.
` RingElt` `RationalField.neg(RingElt b)`
Returns -b.
` RingElt` `QuotientField.neg(RingElt b)`
Returns -b.
` RingElt` `PolynomialRing.neg(RingElt b)`
Returns -b as an element of this Ring.
` RingElt` `ModularRing.neg(RingElt b)`
Returns -b.
` RingElt` `ModularIntegerRing.neg(RingElt b)`
Returns -b mod m.
` RingElt` `Matrix2x2Ring.neg(RingElt m1)`
Returns the negation of a matrix, -m1.
` RingElt` `IntegerRing.neg(RingElt b)`
Returns -b as an element of this Ring.
` RingElt` `F2Field.neg(RingElt a)`
Returns -a mod 2.
` RingElt` `DoubleField.neg(RingElt b)`
` RingElt` `PolynomialRing.normalize(RingElt b)`
Returns a normal form for the polynomial b.
` RingElt` `QuotientField.numerator(RingElt b)`
Returns the numerator of b as an element of the base ring.
`static java.math.BigInteger` `RationalField.numeratorToBigInteger(RingElt b)`
Returns the numerator r if b = r/s.
` RingElt` ```Ring.pow(RingElt b, java.math.BigInteger a)```
Returns b^a.
` RingElt` ```Ring.pow(RingElt b, int a)```
Returns b^a.
` RingElt` `PolynomialRing.primitivePart(RingElt a)`
Returns b/contents(b).
` RingElt` `UniversalPolynomialRing.reduceVariables(RingElt p)`
Reduces the polynomial into a polynomial of the polynomial ring with the fewest variables.
` RingElt` ```Ring.sub(RingElt a, RingElt b)```
Returns a - b.
` RingElt` ```UniversalRing.tdiv(RingElt a, RingElt b)```
True division.
` RingElt` ```Ring.tdiv(RingElt a, RingElt b)```
Computes a/b (true division).
` RingElt` ```PolynomialRing.tdiv(RingElt p, RingElt q)```
Returns p/q (true division).
` RingElt` ```ModularIntegerRing.tdiv(RingElt a, RingElt b)```
The same as div(a,b).
` RingElt` ```IntegerRing.tdiv(RingElt a, RingElt b)```
True division.
`static java.math.BigInteger` `ModularIntegerRing.toBigInteger(RingElt b)`
Returns the BigInteger value of b.
`static java.math.BigInteger` `IntegerRing.toBigInteger(RingElt b)`
Returns the value of b as a BigInteger.
` boolean` `F2Field.toBoolean(RingElt a)`
Returns the boolean value of a.
`static double` `DoubleField.toDouble(RingElt b)`
returns the double value of b.
` RingElt` `Matrix2x2Ring.trace(RingElt m1)`
Returns the trace of m.

Constructors in com.perisic.ring with parameters of type RingElt
`ModularRing(RingElt m)`
Constructs m.getRing()/m * m.getRing().