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1. Introduction

A straightforward approach for implementing multivariate polynomials of the

form R[zy, ..., z,) over aring R is to implement them recursively as R[xy] ... [z,).
That means we implement an arithmetic for univariate polynomials S[z,] for a
generic ring S and allow S to be another polynomial ring, here S = R[xq] ... [z, 1].

This generic recursive solution suits to a programming context which allows
polymorphism. Polymorphic strategies are standard in object oriented languages,
but also possible in other environments, as in the C language via void* pointer
arithmetic, or in some Computer algebra systems which have a generic data type
representing all mathematical entities (as e.g. in SIMATH (Zimmer, 1985)).

The basic arithmetic as addition, multiplication, ged, etc. is rather easy to im-
plement for univariate polynomials, even if the coefficient ring is only generically
available. See e.g. (v.z.Gathen, 1999) for algorithms for univariate polynomials
over arbitrary UFDs. Therefore the recursive implementation is especially useful
for rapid prototyping or experiments in a new programming language.

However we note that for special application areas (e.g. Grobner bases) a
distributive representation of multivariate polynomials seems to be the better
choice. (There, a polynomial is represented as a list of vectors where each vector
(a,e1,...,e,) represents a monomial ax{' ---zt.)

n
For recursively represented multivariate polynomials we have

Py = R[z1] ... [xn] # Rlz=q)] - - - [Tam)) = Pr (1)

where 7 is a nontrivial permutation. For some applications, for example the
computation of partial derivatives for each variable, it is necessary or at least
very convenient to compute the representation of a polynomial p; € P, in P;.

In the following we use the word “map” in the meaning that we calculate the
representation of p; as an element of P;. The main result of this paper is a new
algorithm mapping an element p; € P; to P;.

The classical approach toward this problem is to unwind the recursion com-
pletely, then to compute the distributive representation, permute the exponent
vectors and finally transform back into the recursive representation.
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In the next section we describe a new algorithm which maps p; into P, avoid-
ing a distributive representation. More general, the algorithm maps an element
p € Rz ... [xru] into Rlzi]...[z,], where k < n, 7 is a permutation on
{1,...,n}, and elements of R’ can be mapped into R. The algorithm has the
advantage of being short and simple in code and is therefore well suited for rapid
prototyping and ad hoc implementations.

The efficiency of the new algorithm is — similar to the classical algorithm via a
distributive representation — exponential in the number of variables. A detailed
analysis which keeps in account the density of coefficients for each variable and
different (sparse/dense) representations of univariate polynomials is behind the
scope of this paper but experiments with the example implementation (Conrad,
2002) show a reasonable performance for practical use.

In Section 3 we show how to use the algorithm together with an exception han-
dling mechanism to solve related problems as avoiding constructions as R[z][x]
or to map elements from one polynomial ring into another where the two sets of
variables only have a common subset.

An example implementation can be found in the Java package com.perisic.ring
(Conrad, 2002). The related web site http://ring.perisic.com contains also a
small demo applet and source code of Java classes. In the last section we give
some implementation remarks.

2. The Algorithm

In the following ring means a ring with 1, that means the ring contains a neutral
element 1 of the multiplication. For convenience we discuss the algorithm in an
object oriented context, that is we speak of classes, methods, etc. However as
mentioned in the introduction, it could well be transferred into any language
featuring another paradigm but supporting polymorphic behavior as e.g. the C
language.
4cm

First we describe the context of the algorithm. An abstract base class Ring re-
quires from its child classes the implementation of the basic arithmetic (addition,
multiplication, ...). A second class RingElement stores the information about the
elements of a ring. Each RingElement instance a belongs to an instance of a child
class R of the Ring. We intuitively write for short a € R. Examples for R are the
ring of integers, rational numbers (not included in Figure 1), or a polynomial
ring. We assume that the class PolynomialRing extends the Ring and has two
attributes, the variable and the coefficient ring. So, the polynomial ring
R = T[x] has the attributes “z” and T'. Figure 1 shows an edited UML diagram
of the minimal requirements for implementing multivariate polynomials over Z
in this way. “Edited” means here that for the sake of clarity some methods are
omitted.

For an element r € T[x] we write r = Y b;z* = bga® + -+ - + b,2" with b; € T
which implies an internal representation containing the values of the b;. The
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RingElt Ring
-myRing: Ring < _____ +add(a: RingElt, b: RingElt): RingElt
-data: Object +mult(a: RingElt, b: RingElt): RingElt
L +map(a: RingElt): RingElt
PolynomialRing

-variable: String <
-F: Ring
+add(p: RingElt, g: RingElt): RingElt IntegerRing
+mult(p: RingElt, g: RingElt): RingElt +add(a: RingElt, b: RingElt): RingElt
+map(a: RingElt): RingElt +mult(a: RingElt, b: RingElt): RingElt

Figure 1: Edited UML diagram of the ring/polynomial relationship

nature of the representation (sparse/dense/mixed) of r € T[z] is irrelevant for
our algorithm.

A special method of a ring R is the method map(RingElement b). For a
RingElement instance b € S where S is another ring it returns a € R such that
a = k(b) where £ is a canonical (possibly partial defined) function x : S — R.

So for example the map method of the field Q of rational numbers will return
the ring element a = b/1 for an integral argument b € Z. Vice versa, a map
method of Z for fractions p/q € Q is only partially defined, e.g. for ¢ = 1.

Note that Z can be mapped into each ring R via the mapping +n — +(1g +
.-+ 4 1g) (n times), where 1g is the 1 of the ring R.

With the notation introduced above our aim is to give an algorithm for the map
method of the PolynomialRing class. For this we use the following recursively
defined algorithm.

Algorithm 1
Input:

o A ring element s € S where S is a ring.
o A polynomial ring T'|x] where T is a ring.
Output:
o s € T[x] withs=7¢".
The algorithm: Return a value depending on the different cases below.
(Note: The only nontrivial case is case V.)
Case I: If S = T[x] return s’ = s.
Case II: If S =T return s" := sa°.
Case III: If S is not a polynomial ring then map s into t € T and return
s = tal.
Case IV: If S = Ulz], where U is a ring, we have s =Y a;x*. In this case map
each a; € U to b; € T and return s’ := > b;x’.
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Case V: If S = Uly| withy # x and U a ring, we have s = >_ a;y*. Map y € Z[y]
toyr € T and map a; € U into ¢; € Tz]. Let yrpy = yra® € T|z]. Return
the result of the computation s’ :=" ciyé,,[x}.

Note that with S = Rl[zzq)]...[Tzmw], T = R[z1]...[2n-1] and z = x, we
obtain the situation of the introduction.

Theorem 1 Algorithm 1 is correct.

Proof: From the construction it is straightforward by checking each single case
that the algorithm delivers the correct result if it terminates. So it remains to
show that the algorithm in fact terminates. In particular we have to show that
Case V does not lead to an infinite recursion. We prove this by induction to
[ =1(T[z],S) := n+ m where n is the number of variables of T'[x] and m is the
number of variables of S with m = 0 if S is not a polynomial ring.

e For [ = 1 we have n = 1 and m = 0. This means we are in one of the
cases II or III and T is not a polynomial ring. In these cases the algorithm
obviously terminates.

e Assume now [ > 1. For m = 0 we are in case III. By induction we know
that s can be mapped into T" and therefore the algorithm terminates in
this case. For m > 0 the critical case is case V. But in this case we have
(Z[y],T) =n < land [(U, T[z]) <l and therefore the algorithm terminates
by induction.

q.e.d.

3. Related Problems and Extensions

Modern languages as C++ and Java usually have an exception handling mech-
anism. This means that in an error situation the program does not necessarily
terminate. Instead an exception is thrown which can be catched and dealt with.
See e.g. (Deitl, 1999) or any other Java/C++ textbook for details.

In the following we assume that the map method of a ring is implemented
such that an error is thrown in the case that there is no canonical map from
the input parameter into the ring. In fact we need only the minimal requirement
that a ring R which is not a polynomial ring throws an error if we try to map a
polynomial into R.

With this extension we obtain easily an algorithm for avoiding constructions
as Z[x][y][x], that means an ambiguity of variable names.

Algorithm 2 Input:

e A ring T and a variable x.
Output:
o true, if x is a variable of T and false otherwise.

The algorithm.:

1. Try to map x € Z[z] into T via Algorithm 1.
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2. If no exception is thrown return true. Otherwise return false.

Another useful extension of Algorithm 1 is the introduction of a new Case [Va
which is checked before Case V.

Algorithm 1’ FExtend Algorithm 1 with an additional case between Case 1V
and Case V:

Case IVa: If S = Uly| withy # x and U a ring, and, in addition, s = uy® with
u € U, then map u into s € T'[z] and return s'.

This additional case allows the mapping of polynomials of polynomial rings,
where the sets of variables only have a common subset. So, for instance we can
map z+yz* € Z[x][y][z] into Z[2][a][y] because x does not occur in the polynomial
z+y2t

4. Implementation Remarks

The Java package com.perisic.ring (Conrad, 2002) contains an example imple-
mentation of Algorithm 1 together with the extensions of Section 3 (exception
handling, Case IVa). The source code of all classes is free for scientific purpose.
There are some minor modifications, which are listed in the following. Please see
(Conrad, 2002) for details.

1. There exists an additional method which parses a string and converts it into
a polynomial. This method is used in Case V. Instead of mapping y € Z[y]

W,

into 7', the string “y” is mapped into T via the String mapping method.

2. The class diagram in Figure 1 is edited. In reality the classes contain many
more methods and attributes, as division, ged, etc.

3. In the package the class RingElt is abstract and has child classes
PolynomialRingElt, IntegerRingElt etc. which contain the data. The
polynomials are stored in dense representation as arrays of ring elements
which is sufficient for the experimental nature of the package.

4. Additional rings are available in the package, for instance rational numbers,
complex numbers, cyclotomic fields, and modular rings.
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