
Exploring the synergies between the Object-Oriented paradigm and
Mathematics: a Java led approach

MARC CONRAD

Department of Computing and Information Systems University of Luton
Park Square, Luton, LU1 3JU, United Kingdom

Email: Marc.Conrad@luton.ac.uk

TIM FRENCH
Department of Computing and Information Systems University of Luton

Park Square, Luton, LU1 3JU, United Kingdom
Email: Tim.French@luton.ac.uk

Abstract

Whilst the object oriented paradigm and its instantiation within programming
languages such as Java has become a ubiquitous part of both the commercial and
educational landscapes, its usage as a visualisation technique within Mathematics
undergraduate programmes of study has perhaps been somewhat underestimated. By
regarding the object oriented paradigm as a medium for conceptual exploration (rather
than merely as a tool) the aim is to show how the close conceptual links between
object orientation and certain mathematical structures such as rings and groups can be
more fully realised, using a ready-made public-domain Java package.

1. Introduction

The object oriented (OO) paradigm has become synonymous with IT systems that
exhibit reusability, modularity and scalability. Indeed, many within the IT industry
regard OO methods of construction as being the de facto choice for information
system deployment of all types and sizes (cf. the Object Management Group [1],
Sun's Java [2], or Microsoft’s C# [3]). Current UK University undergraduate
programmes in Computer Science (as well as in the related disciplines of Computing,
Informatics, and Software Engineering), increasingly reflect this ubiquity. Thus,
students enrolled on programmes containing a significant component of Computer
Science typically encounter OO via exposure to methods such as the UML [4] and/or,
through exposure to programming languages that support the OO paradigm, such as
Java, J2ME, C++, C#, or Python. Such students also typically encounter OO in the
context of studying Object Oriented Relational Database Management Systems,
within E-enterprise n-tier architectures, or indeed within any number of the diverse
topic areas that comprise a “modern” undergraduate Computing curriculum. Figure 1
shows in summative form, how modern curricula in the UK are informed by the OO
paradigm at 1st year Undergraduate level. The on-line survey specifically addressed
students studying Computer Science/Mathematics undergraduate degree programmes
and it is this group that forms the principal target audience for the approach advocated
here.

Given the ubiquity of the OO paradigm, within both pedagogic and vocational
settings, it would seem foolish not to seek to fully exploit the potential of OO as an
educational medium for the visualisation of abstraction. With this in mind, we go on
to suggest ways in which the OO paradigm can be used to actively support and

reinforce student conceptualisation and visualisation of some specific “pure”
mathematical structures such as groups, rings, vector spaces, etc.

It is perhaps reasonable to assume that our intended target audience (e.g. 2nd year BSc
students studying Computer Science & Mathematics) will have already previously

University Language
Aston Maple
Birmingham Undefined/Unclear
Bristol C++
Brunel Generic OO
Cambridge University Generic OO
Cardiff Java
Coventry Modula-2
Dundee Java
Edinburgh Java
Essex Java
Hertfordshire Undefined/Unclear
Imperial College Undefined/Unclear
Keele Undefined/Unclear
Kent Java
Kings College London Java
Kingston University Java
Lancaster Undefined/Unclear
Liverpool Java
Loughborough Undefined/Unclear
Manchester Java
Manchester Metropolitan Java
Oxford Brookes C++
Oxford University Generic OO
Queen Mary College, London Java
Queens University Belfast Modula-2
Sheffield Hallam C++
Strathclyde Undefined/Unclear
Surrey Undefined/Unclear
Swansea Undefined/Unclear
UCL Java
University of Central Lancashire Undefined/Unclear
University of Wales (Aberystwyth) Java
University of Wales (Bangor) Java
Westminster Generic OO
York Maple

Figure 1: A snapshot survey of UCAS GG15 (BSc Joint Hons. in Mathematics and
Computer Science) Entry 2003–4. Programming languages taught during 1st year.
Source: published internet material in the public domain, August 2003.

gained some exposure to OO in the context of either systems analysis and/or practical
software development during their 1st year of study at University level.

The intention behind the approach offered here is to build upon these enabling
foundations so as to reveal the fundamental synergies that exist between the various
entities that are central to the OO paradigm (such as Abstract Data Types) and
abstract mathematical structures (such as Rings and Groups). By inviting students to
revisit certain fundamental OO constructs and techniques (such as classes,
polymorphism, encapsulation and inheritance) within the context of pure
mathematics, students may perhaps gain a deeper insight into mathematical
abstractions and related algebraic structures. The idea is to generally reinforce
students’ learning and to generally enhance their mathematical maturity through a
process of “live engagement” with a familiar and indeed ubiquitous OO paradigm.

The classical role of Computer Science (and Computer Algebra Systems in particular)
within Mathematical education has been that of a pragmatic tool useful for reducing
the amount of time students spend in “boring and repetitive drill exercises”, and
increasing the time given to more “interesting and motivating” aspects of mathematics
[5]. In [6] for example, Java’s role in Computer Algebra is mainly seen to be purely
pragmatic: as a convenient means to create a graphical user interface or as a useful
tool to explore distributed programming tasks. Our approach aims to go further. We
attempt to show how gaining a deeper insight and understanding of object oriented
techniques can provide an ideal opportunity for our target audience to better visualize
and understand abstract mathematical concepts and entities.

2. Object Oriented Techniques and Mathematics

We start by reviewing some fundamental object oriented techniques using some
mathematical examples. The aim is to introduce the reader who is not familiar with
object oriented programming to the relevant concepts and also to show how
mathematical structures are intimately linked to object oriented concepts. For a
classical overview of object oriented concepts, unrelated to mathematics, the reader is
referred to any of the various textbooks such as [7] or [8].

Finite Field
generating Polynomial
characteristic

add(a : Element, b : Element) : Element
subtract(a : Element, b : Element) : Element
negate(a : Element) : Element
mult(a : Element, b : Element) : Element
etc. ...(...)

Figure 2: A class Finite field with the generating polynomial
and the characteristic as attributes and the arithmetic as
methods. We assume a polymorphic class Element
representing field elements .

An object is an entity that combines data and behaviour. For example, Figure 2 above
shows the definition of a class Finite Field. The class defines Addition,
Multiplication, etc. as behaviours. Here, the data are the characteristic and the
generating polynomial. One way to structure classes is to use an inheritance
hierarchy. An inheritance relationship, also known as a child-parent relationship,
allows one class (the parent class) to provide all its methods to a second class (the
child class). This is also known as specialization or an "is a" relationship. Figure 3
above shows how a simple inheritance relationship is defined between algebraic
number fields. In this case the child classes comprise a cyclotomic number field and a
quadratic number field. Using "is a" is usually a good rule of thumb to discover
inheritance relationships: As a quadratic number field is an algebraic number field, it
is natural that all methods implemented in the algebraic number field are available for
the quadratic number field class.

Java and indeed other OO languages allow us to reimplement methods in a child class
which have already been implemented in a base class. For instance from the relation
(a + b)2 = a2 + b2 mod 2 it follows that squaring of polynomials in characteristic 2
can be performed in linear time. In an inheritance relationship of a class Finite Field
and a class Finite Field Characteristic 2 as shown in Figure 4, for performance
reasons, we might want to use a different squaring method in characteristic 2 than in
the parent class. Such a reimplementation of a method is known as overriding a
method. The power of overriding is revealed in the context of polymorphic
techniques i.e. in this particular example we could (generically) implement, say, a
vector space over finite fields, using a reference variable to the Finite Field class of
Figure 4.

When running the application we can initialise this reference variable with a Finite
Field Characteristic 2 object. In a programming language supporting dynamic linking
(such as Java or C++ via the keyword virtual), the method of the object (Here:
squaring in Finite Field Characteristic 2) is executed during program run-time
execution.

Algebraic Number
Field

Quadratic Number
Field

Cyclotomic Number
Field

Figure 3: An inheritance hierarchy of algebraic fields.

The arithmetic of finite fields, number fields, etc. is explicitly known and can be
implemented in a straightforward way. However, using an object oriented architecture
we can allow our students to go further. We are able to implement classes where it is
sufficient to know the existence of a method. These classes are called abstract classes
and the methods are called abstract methods.

This is illustrated by considering the example of a class Ring that corresponds to an
algebraic ring in mathematics. Because a ring has addition and multiplication, we
know that there should be methods for addition and multiplication. These methods
cannot be implemented, so they are abstract. In an OO language such as Java we can
define them by using the keyword abstract as follows:

abstract public class Ring {
...

abstract public RingElt add(RingElt a, RingElt b);
abstract public RingElt mult(RingElt a, RingElt b);

...
}

where the class RingElt is a polymorphic reference to the elements of a ring. Note that
of course not all methods of an abstract class need to be abstract. For instance
squaring could be implemented as:

public RingElt square(RingElt a) { return mult(a,a); }

The postulated properties of a domain are reflected as abstract methods in Java
classes: i.e. an algebraic ring “has” by definition addition and multiplication. Of
course, addition and multiplication are not known “algorithmically” for an arbitrary
(unspecified) ring: they cannot be implemented. Thus, an abstract class is able to
mimic the axiomatic definition of a mathematical entity, here a “Ring”. As squaring is
not an axiom, it can be implemented via the multiplication method. Note that
structural axioms such as Associativity or Distributivity cannot be directly declared as
methods, and have to be formulated as constraints.

Finite Field
[other methods] ...(.. .)
square(a : Element) : Element

Finite Field Chracteristic 2
square(Element) : Element

Figure 4: The method square() is reimplemented (overridden) in the child class

Finite Field (for performance reasons)

Furthermore, abstract classes cannot be directly instantiated as objects. The following
examples show the context where the Ring class may be used.

• A Ring may have child classes, for instance a class Integer Ring implementing
the integers Z, or classes for the field of rational numbers, modular integers
etc. To make these classes usable the abstract methods (as add() and mult())
need to be overridden. The implemented (non abstract) methods (as square())
are automatically available to the child classes.

• The class Ring is used via association or aggregation for the definition of other

(abstract or non-abstract) classes. For instance we may implement a
Polynomial Ring over a Ring. As a Polynomial Ring itself is a Ring we can
instantiate a Polynomial Ring over a Polynomial Ring, leading to multivariate
polynomials.

We conclude this section by discussing how the RingElt class is designed to represent
ring elements. The design requirement of this class is that it is able to carry the data
necessary for representing elements of any possible ring in the system (as integers or
polynomials) . Object oriented languages offer various possibilities. A simple Java
solution attributes RingElt with a reference variable to the Java base type
java.lang.Object. The referenced object could then be of any type as Java BigInteger
or an Array of RingElts (for representing polynomials) etc. This approach is suitable
and sufficient for ad hoc implementations. However, a more structured approach as
supported by the com.perisic.ring package [9] makes RingElt itself an abstract class
having the special designed classes PolynomialRingElt or IntegerRingElt as child
classes. Note that the ring elements are implemented as immutable, which means they
are constructed with a certain value, say an array of coefficients for polynomials, and
never changed afterwards.

Method Documentation Comments/Discussion
 RingElt add(RingElt a,RingElt b) returns a+b
RingElt mult(RingElt a, RingElt b) returns a*b
RingElt neg(RingElt a) returns –a

Methods for the basic arithmetic as
discussed in section 2.

RingElt zero() returns the 0 of the
ring (the neutral
element of addition).

Each ring has an additive neutral
element. In the design we assume that
each Ring has a different zero
element.
(An alternative design may assume
"null" as a zero representation
common to all rings.)

boolean equalZero(RingElt a) returns true if a = 0. The basic arithmetic operations are not
sufficient to decide if two elements a
and b are the same. Note that equality
on the Object level (two object
references are equal if they refer to the
same memory location, i.e. to the
same Object) is not sufficient, as we
can store the same numerical value in
two different objects.

Table 1: Abstract methods of the com.perisic.ring.Ring class

Method Documentation Comments/Discussion
RingElt one() returns the 1 of the

ring (the
multiplicative

neutral element)

Not all rings are rings with one. Rings
with one will override this method.

If this method is not overridden it will
throw an Exception.

RingElt inv(RingElt a) returns 1/a Of course not every element of a Ring
has a multiplicative inverse. The

default behaviour of this method is to
throw an Exception if a

���������
	��
return 1 for a = 1.

RingElt tdiv(RingElt a, RingElt b) returns an element x
such that b * x = a.

RingElt ediv(RingElt a, RingElt b) returns q such that
a = q * b + r

(Euclidian division)
RingElt mod(RingElt a, RingElt b) returns r such that

a = q * b + r
(Euclidian division)

tdiv stands for "true division" in order
to distinguish it from Euclidian

division. Note that a ring that is not
Euclidian still might be able to

implement true division for certain
elements, e.g. the ring Z[x] has no
Euclidian division but we can still
compute (4x2 – 1)/(2x – 1)=2x + 1.

boolean isField()

true if and only if the
Ring is a field.

boolean isEuclidian() true if and only if the
Ring is Euclidian.

boolean isUFD() true if and only if the
Ring is a unique

factorisation domain
(UFD).

Each field is Euclidian and each
Euclidian ring is a UFD. This is

reflected in the default
implementation, e.g. isEuclidian() is

implemented to return true if isField()
is true and to return false otherwise.

Therefore a field only needs to
override isField().

RingElt gcd(RingElt a, RingElt b) returns the greatest
common divisior

Implemented using mod(). That means
this method is not available in UFDs
that are not Euclidian. These rings

have to override this method if they
want to provide a gcd().

RingElt map(int k)
RingElt map(BigInteger k)

returns k as an
element of this ring.

Implemented for rings with 1 via
1+1+...+1 (k times).

RingElt map(RingElt a) returns a as an
element of this ring.

Here a belongs to another Ring object
than this. This method is implemented

in the case that a is an integer via
addition 1+1+..+1 (a times) and in the
case that a is a fraction p/q via div().

RingElt map(java.lang.String str) returns str as an
element of this ring.

The method responsible for input of
ring elements. Most child classes will

override this method using a parser
that is appropriate for this specific

ring. By default we parse for integers
and fractions.

RingElt map(java.lang.Object ob) maps the Object as
an element of this

ring.

Works for classes
java.math.BigInteger, java.lang.Ring

and RingElt. Child classes may
override this for other objects, e.g.

matrices could accept two dimensional
arrays as parameter.

Table 2: Semi-abstract methods of the com.perisic.ring.Ring class

3. Example: The Ring class of com.perisic.ring
In order to gain a better understanding of the implementation of an abstract
mathematical entity as an abstract class we now take a closer look at the
implementation of the abstract class Ring within the com.perisic.ring Java package
[9]. This package also contains child classes of the Ring class and an implementation
of the RingElt class and is available free for educational purposes. The package has
been designed so as to be suitable for use within a practical session to accompany a
lecture on a relevant topic area as typically covered within Mathematics and
Computer Science undergraduate curricula. The Ring class is in fact intended to serve
as a reference implementation (exemplar) for other abstract structures such as groups,
vector spaces, metric spaces etc. While syntactically we can distinguish between only
abstract and non-abstract classes this distinction is in practice semantically too
restrictive, as we encounter methods that have to be overridden in some cases only.
We call these methods semi-abstract. In Java, semi-abstract methods are implemented
as normal (non-abstract) methods.

Tables 1-3 give an overview of all the methods that are presently available in the Ring
class. The first column contains the method names and the second column presents
some necessarily brief documentation of the method. The third column containing
explanatory remarks seeks to emphasise the conceptual underpinnings that underlie
the method in the context of object oriented design and mathematics.

We conclude this section with a short overview of some of the child classes of the
Ring class. The four classes in Table 4 below are to be instantiated with exactly one
object (There is only one ring of integers, field of rationals, etc). This object can be
directly referenced as a member of the Ring class.

Method Documentation Comments/Discussion
 RingElt sub(RingElt a, RingElt b) returns a – b Implemented as a + (-b)
RingElt div(RingElt a, RingElt b) returns a /b Implemented as a * (1/b)
boolean equal(RingElt a, RingElt b) true if and only if

a = b
Implemented as a – b = 0.

RingElt pow(RingElt a, int k)
RingElt pow(RingElt a,
 java.math.BigInteger k)

returns ak Implemented using
multiplication.

RingElt evaluatePolynomial(
 RingElt p, RingElt a)

returns the
evaluation of the
polynomial p at
the element a.

Implemented using basic
arithmetic.

Table 3:Implemented methods of the com.perisic.ring.Ring class

Class name Description Referenced as
IntegerRing Implements the integers Z via java.lang.BigInteger Ring.Z
DoubleField The “field” of real numbers R approximated by the Java

double type
Ring.R

F2Field The field of 2 elements F2. This is implemented as a wrapper
of the type boolean.

Ring.F2

RationalField The rational numbers Q. Ring.Q

Table 4:Child classes of com.perisic.ring.Ring with exactly one object instance.

The objects of the classes in Table 5 are constructed with a reference attribute to a
Ring object R.

4. Examples of student activities

The package com.perisic.ring may be used as a useful reference model for the
visualization of abstract mathematical entities (in this case an algebraic ring) in the
form of abstract software classes. These abstract classes can made workable by
deriving child classes and through the use of overriding methods. In the following two
sections we attempt to give some ideas which might be helpful for developing
practical sessions or projects for mathematical students using Java.

4.1 Developing abstract classes
• In a similar manner to the Ring class implemented within the package as

previously described, an abstract class Group can be developed and evaluated.
Here the abstract methods are the operation and the neutral element.
Exponentiation can be implemented using several varieties of techniques
found in literature such as [10]. For example some child classes of relevance
to building ‘real’ applications could be (Z/nZ)* and the group of an elliptic
curve. Advanced students could in this way be introduced to cryptographic
algorithms that can be implemented for abstract (abelian) groups (cf. [11]).

• A metric space could be implemented as an abstract class MetricSpace with an
abstract method distance(). Then methods operating on a set of points such as
computing the closest two points can be implemented via the distance()
method, similar as the square() method is implemented via mult() for Ring..
Some suitable child classes might include: points on a plane, a three
dimensional space, F2

n
, etc

• Other mathematical structures that could be visualized as abstract classes in
object oriented software include vector spaces, topological spaces, monoids,
etc.

4.2 Extending the com.perisic.ring package

• Here our prime focus of attention will be the direct child classes of the Ring
class. Small size projects could comprise a field of 4 or 9 elements, a wrapper
class of Java's BigDecimal, or algebraic orders as Z[

������

Class name Description
PolynomialRing Implements polynomials R[x] (where x can be any string).
ModularRing Implements R/fR. Here R is a polynomial ring and f a polynomial. It is

useful for instantiating algebraic extensions as objects. The
com.perisic.ring package features also a subclass CyclotomicField for the
implementation of cyclotomic fields (an algebraic extension of Q by an
unit root) showing how the ModularRing class can be used..

QuotientField The field of fractions p/q with ����� � �������! #" Useful for rational function
fields when R is a Polynomial Ring.

Table 5: Child classes of com.perisic.ring.Ring that are quipped with a reference
attribute to a Ring object R.

• Algebraic extensions similar to the CyclotomicField class and
UniversalCyclotomicField classes can be developed via the ModularRing
class. The easiest example here being quadratic extensions. More advanced
usage might include the implementation of infinite extensions, say the
extension of Q by all square roots of primes.

• Finite Fields as child classes of ModularRing. An interesting and challenging
point here is the discussion of the uniqueness of finite fields: Each irreducible
polynomial of a given degree leads to a “different” finite field, however they
are all isomorphic.

• Using an abstract class (finite, abelian) Group and Ring to implement a group
ring.

• Using the abstract class Ring for implementing a vector space over arbitrary
fields.

5. Conclusions

We have identified and evaluated a fundamental relationship between object oriented
techniques and Mathematical entities. Especially the concept of abstract classes can
successfully be used as a visualization of abstract mathematical concepts such as
“Ring”, “Group”, “Metric Space”, etc. The ubiquity of object oriented languages in
undergraduate education strongly suggests to use these relationships to improve
student conception in Computer Science/Mathematics undergraduate degree
programs. As we have shown student activities could then include extensions of the
Java package com.perisic.ring in the context of algebraic rings or the development of
similar software for the implementation of other algebraic structures using
com.perisic.ring as a reference model.

References

[1] OMG - The Object Management Group, http://www.omg.org.
[2] Java, http://java.sun.com.
[3] C#, http://msdn.microsoft.com/vcsharp/.
[4] UML – The unified modeling language, http://www.omg.org/uml.
[5] L. Bernardin, B. Char, E. Kaltofen, 1999, Symbolic Computation in Java: an
Appraisement, Proceedings of ISSAC’99, ACM Press.
[6] C. Leinbach, D. C. Pountney, T. Etchells, 2000. Appropriate use of a CAS in the
teaching and learning of mathematics, Int. J. Math. Educ. Sci. Tehcnol., 33, 1-14.
[7] T. Budd, 1998, An Introduction to Object-Oriented Programming, Addison-
Wesley.
[8] E. Braude, 2003, Software Design - From Programming to Architecture, Wiley.
[9] M. Conrad, 2002, com.perisic.ring, A Java package for abstract mathematics,
http://ring.perisic.com.
[10] H. Cohen, 1993, A Course in Computational Algebraic Number Theory,
Springer.
[11] I. Blake, G. Seroussi, N. Smart $ 1999. Elliptic Curves in Cryptography.
Cambridge University Press.

