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Abstract 

Whilst the object oriented paradigm and its instantiation within programming 
languages such as Java has become a ubiquitous part of both the commercial and 
educational landscapes, its usage as a visualisation technique within Mathematics 
undergraduate programmes of study has perhaps been somewhat underestimated. By 
regarding the object oriented paradigm as a medium for conceptual exploration (rather 
than merely as a tool) the aim is to show how the close conceptual links between 
object orientation and certain mathematical structures such as rings and groups can be 
more fully realised, using a ready-made public-domain Java package. 
 
 

1. Introduction 
 
The object oriented (OO) paradigm has become synonymous with IT systems that 
exhibit reusability, modularity and scalability. Indeed, many within the IT industry 
regard OO methods of construction as being the de facto choice for information 
system deployment of all types and sizes (cf. the Object Management Group [1], 
Sun's Java [2], or Microsoft’s C# [3] ). Current UK University undergraduate 
programmes in Computer Science (as well as in the related disciplines of Computing, 
Informatics, and Software Engineering), increasingly reflect this ubiquity. Thus, 
students enrolled on programmes containing a significant component of Computer 
Science typically encounter OO via exposure to methods such as the UML [4]  and/or, 
through exposure to programming languages that support the OO paradigm, such as 
Java, J2ME, C++, C#, or Python. Such students also typically encounter OO in the 
context of studying Object Oriented Relational Database Management Systems, 
within E-enterprise n-tier architectures, or indeed within any number of the diverse 
topic areas that comprise a “modern” undergraduate Computing curriculum. Figure 1 
shows in summative form, how modern curricula in the UK are informed by the OO 
paradigm at 1st year Undergraduate level. The on-line survey specifically addressed 
students studying Computer Science/Mathematics undergraduate degree programmes 
and it is this group that forms the principal target audience for the approach advocated 
here. 
 
Given the ubiquity of the OO paradigm, within both pedagogic and vocational 
settings, it would seem foolish not to seek to fully exploit the potential of OO as an 
educational medium for the visualisation of abstraction. With this in mind, we go on 
to suggest ways in which the OO paradigm can be used to actively support and 



reinforce student conceptualisation and visualisation of some specific “pure” 
mathematical structures such as groups, rings, vector spaces, etc. 
 
It is perhaps reasonable to assume that our intended target audience (e.g. 2nd year BSc 
students studying Computer Science & Mathematics) will have already previously 

 
University Language 
Aston Maple 
Birmingham Undefined/Unclear 
Bristol C++ 
Brunel Generic OO 
Cambridge University Generic OO 
Cardiff Java 
Coventry Modula-2 
Dundee Java 
Edinburgh Java 
Essex Java 
Hertfordshire Undefined/Unclear 
Imperial College Undefined/Unclear 
Keele Undefined/Unclear 
Kent Java 
Kings College London Java 
Kingston University Java 
Lancaster Undefined/Unclear 
Liverpool Java 
Loughborough Undefined/Unclear 
Manchester Java 
Manchester Metropolitan Java 
Oxford Brookes C++ 
Oxford University Generic OO 
Queen Mary College, London Java 
Queens University Belfast Modula-2 
Sheffield Hallam C++ 
Strathclyde Undefined/Unclear 
Surrey Undefined/Unclear 
Swansea Undefined/Unclear 
UCL Java 
University of Central Lancashire Undefined/Unclear 
University of Wales (Aberystwyth) Java 
University of Wales (Bangor) Java 
Westminster Generic OO 
York Maple 

 
Figure 1: A snapshot survey of UCAS GG15 (BSc Joint Hons.  in Mathematics and 
Computer Science) Entry 2003–4. Programming languages taught during 1st year.  
Source:  published internet material in the public domain, August 2003. 
 



gained some exposure to OO in the context of either systems analysis and/or practical 
software development during their 1st year of study at University level. 
 
The intention behind the approach offered here is to build upon these enabling 
foundations so as to reveal the fundamental synergies that exist between the various 
entities that are central to the OO paradigm (such as Abstract Data Types) and 
abstract mathematical structures (such as Rings and Groups). By inviting students to 
revisit certain fundamental OO constructs and techniques (such as classes, 
polymorphism, encapsulation and inheritance) within the context of pure 
mathematics, students may perhaps gain a deeper insight into mathematical 
abstractions and related algebraic structures. The idea is to generally reinforce  
students’ learning and to generally enhance their mathematical maturity through a 
process of “live engagement” with a familiar and indeed ubiquitous OO paradigm.   
 
The classical role of Computer Science (and Computer Algebra Systems in particular) 
within Mathematical education has been that of a pragmatic tool useful for reducing 
the amount of time students spend in “boring and repetitive drill exercises”, and 
increasing the time given to more “interesting and motivating” aspects of mathematics 
[5]. In [6] for example, Java’s role in Computer Algebra is mainly seen to be purely 
pragmatic: as a convenient means to create a graphical user interface or as a useful 
tool to explore distributed programming tasks. Our approach aims to go further. We 
attempt to show how gaining a deeper insight and understanding of object oriented 
techniques can provide an ideal opportunity for our target audience to better visualize 
and understand abstract mathematical concepts and entities. 
 

2. Object Oriented Techniques and Mathematics 
 
We start by reviewing some fundamental object oriented techniques using some 
mathematical examples. The aim is to introduce the reader who is not familiar with 
object oriented programming to the relevant concepts and also to show how 
mathematical structures are intimately linked to object oriented concepts. For a 
classical overview of object oriented concepts, unrelated to mathematics, the reader is 
referred to any of the various textbooks such as [7] or [8]. 
 

Finite Field
generating Polynomial
characteristic

add(a : Element, b : Element) : Element
subtract(a : Element, b : Element) : Element
negate(a : Element) : Element
mult(a : Element, b : Element) : Element
etc. ...(...)

 
Figure 2: A class Finite field with the generating polynomial 
and the characteristic as attributes and the arithmetic as 
methods. We assume a polymorphic class Element  
representing field elements .  



An object is an entity that combines data and behaviour. For example, Figure 2 above 
shows the definition of a class Finite Field. The class defines Addition, 
Multiplication, etc. as behaviours. Here, the data are the characteristic and the 
generating polynomial. One way to structure classes is to use an inheritance 
hierarchy. An inheritance relationship, also known as a child-parent relationship, 
allows one class (the parent class) to provide all its methods to a second class (the 
child class). This is also known as specialization or an "is a" relationship. Figure 3 
above shows how a simple inheritance relationship is defined between algebraic 
number fields. In this case the child classes comprise a cyclotomic number field and a 
quadratic number field. Using "is a" is usually a good rule of thumb to discover 
inheritance relationships: As a quadratic number field is an algebraic number field, it 
is natural that all methods implemented in the algebraic number field are available for 
the quadratic number field class.  
 
Java and indeed other OO languages allow us to reimplement methods in a child class 
which have already been implemented in a base class. For instance from the relation 
(a + b)2 = a2 + b2 mod 2 it follows that squaring of polynomials in characteristic 2 
can be performed in linear time. In an inheritance relationship of a class Finite Field 
and a class Finite Field Characteristic 2 as shown in Figure 4, for performance 
reasons, we might want to use a different squaring method in characteristic 2 than in 
the parent class. Such a reimplementation of a method is known as overriding a 
method. The power of overriding is revealed in the context of polymorphic  
techniques i.e. in this particular example we could (generically) implement, say, a 
vector space over finite fields, using a reference variable to the Finite Field class of 
Figure 4. 
 
When running the application we can initialise this reference variable with a Finite 
Field Characteristic 2 object. In a programming language supporting dynamic linking 
(such as Java or C++ via the keyword virtual), the method of the object (Here: 
squaring in Finite Field Characteristic 2) is executed during program run-time 
execution.  
 

 

Algebraic Number 
Field

Quadratic Number 
Field 

Cyclotomic Number 
Field

 
 

Figure 3: An inheritance hierarchy of algebraic fields. 



The arithmetic of finite fields, number fields, etc. is explicitly known and can be 
implemented in a straightforward way. However, using an object oriented architecture 
we can allow our students to go further. We are able to implement classes where it is 
sufficient to know the existence of a method. These classes are called abstract classes 
and the methods are called abstract methods.  
 
This is illustrated by considering the example of a class Ring that corresponds to an 
algebraic ring in mathematics. Because a ring has addition and multiplication, we 
know that there should be methods for addition and multiplication. These methods 
cannot be implemented, so they are abstract. In an OO language such as Java we can 
define them by using the keyword abstract as follows:  
  

abstract public class Ring { 
... 

abstract public RingElt add( RingElt a, RingElt b); 
abstract public RingElt mult( RingElt a, RingElt b); 

... 
} 
 

where the class RingElt is a polymorphic reference to the elements of a ring. Note that 
of course not all methods of an abstract class need to be abstract. For instance 
squaring could be implemented as:   
 

public RingElt square(RingElt a) { return mult(a,a); } 
 
The postulated properties of a domain are reflected as abstract methods in Java 
classes: i.e. an algebraic ring “has” by definition addition and multiplication. Of 
course, addition and multiplication are not known “algorithmically” for an arbitrary 
(unspecified) ring: they cannot be implemented. Thus, an abstract class is able to 
mimic the axiomatic definition of a mathematical entity, here a “Ring”. As squaring is 
not an axiom, it can be implemented via the multiplication method. Note that 
structural axioms such as Associativity or Distributivity cannot be directly declared as 
methods, and have to be formulated as constraints.  
 

 

Finite Field
[other methods] ...(.. .)
square(a : Element) : Element

Finite Field Chracteristic 2
square(Element) : Element

 
Figure 4: The method square() is reimplemented (overridden) in the child class 

Finite Field (for performance reasons) 



Furthermore, abstract classes cannot be directly instantiated as objects. The following 
examples show the context where the Ring class may be used. 
 

• A Ring may have child classes, for instance a class Integer Ring implementing 
the integers Z, or classes for the field of rational numbers, modular integers 
etc. To make these classes usable the abstract methods (as add() and mult() ) 
need to be overridden. The implemented (non abstract) methods (as square() ) 
are automatically available to the child classes. 

 
• The class Ring is used via association or aggregation for the definition of other 

(abstract or non-abstract) classes. For instance we may implement a 
Polynomial Ring over a Ring. As a Polynomial Ring itself is a Ring we can 
instantiate a Polynomial Ring over a Polynomial Ring, leading to multivariate 
polynomials. 

 
We conclude this section by discussing how the RingElt class is designed to represent 
ring elements. The design requirement of this class is that it is able to carry the data 
necessary for representing elements of any possible ring in the system (as integers or 
polynomials) . Object oriented languages offer various possibilities. A simple Java 
solution attributes RingElt with a reference variable to the Java base type 
java.lang.Object. The referenced object could then be of any type as Java BigInteger 
or an Array of RingElts (for representing polynomials) etc. This approach is suitable 
and sufficient for ad hoc implementations. However, a more structured approach as 
supported by the com.perisic.ring package [9] makes RingElt itself an abstract class 
having the special designed classes PolynomialRingElt or IntegerRingElt as child 
classes. Note that the ring elements are implemented as immutable, which means they 
are constructed with a certain value, say an array of coefficients for polynomials, and 
never changed afterwards.  

 

Method Documentation Comments/Discussion     
 RingElt add(RingElt a,RingElt b) returns a+b 
RingElt mult(RingElt a, RingElt b) returns a*b 
RingElt neg(RingElt a) returns –a 

Methods for the basic arithmetic as 
discussed in section 2.  
 

RingElt zero() returns the 0 of the 
ring (the neutral 
element of addition). 

Each ring has an additive neutral 
element. In the design we assume that 
each Ring has a different zero 
element.  
(An alternative design may assume 
"null" as a zero representation 
common to all rings.) 

boolean equalZero(RingElt a) returns true if a = 0. The basic arithmetic operations are not 
sufficient to decide if two elements a 
and b are the same. Note that equality 
on the Object level (two object 
references are equal if they refer to the 
same memory location, i.e. to the 
same Object) is not sufficient, as we 
can store the same numerical value in 
two different objects.  

 
Table 1: Abstract methods of the com.perisic.ring.Ring class 



 

Method Documentation Comments/Discussion 
RingElt one() returns the 1 of the 

ring (the 
multiplicative 

neutral element) 

Not all rings are rings with one. Rings 
with one will override this method. 

If this method is not overridden it will 
throw an Exception. 

RingElt inv(RingElt a) returns 1/a Of course not every element of a Ring 
has a multiplicative inverse. The 

default behaviour  of this method is to 
throw an Exception if a 

���������
	��
return 1 for a = 1. 

RingElt tdiv(RingElt a, RingElt b) returns an element x 
such that b * x = a. 

RingElt ediv(RingElt a, RingElt b) returns q such that  
a = q * b + r 

(Euclidian division) 
RingElt mod(RingElt a, RingElt b) returns r such that 

a = q * b + r 
(Euclidian division) 

tdiv stands for "true division" in order 
to distinguish it from Euclidian 

division. Note that a ring that is not 
Euclidian still might be able to 

implement true division for certain 
elements, e.g. the ring  Z[x] has no 
Euclidian division but we can still 
compute (4x2 – 1)/(2x – 1)=2x + 1. 

boolean isField() 
 
 

true if and only if the 
Ring is a field. 

boolean isEuclidian() true if and only if the 
Ring is Euclidian. 

boolean isUFD() true if and only if the 
Ring is a unique 

factorisation domain 
(UFD). 

Each field is Euclidian and each 
Euclidian ring is a UFD. This is 

reflected in the default 
implementation, e.g. isEuclidian() is 

implemented to return true if isField() 
is true and to return false otherwise. 

Therefore a field only needs to 
override isField(). 

RingElt gcd(RingElt a, RingElt b) returns the greatest 
common divisior 

Implemented using mod(). That means 
this method is not available in UFDs 
that are not Euclidian. These rings 

have to override this method if they 
want to provide a gcd(). 

RingElt map( int k) 
RingElt map( BigInteger k) 

returns k as an 
element of this ring. 

Implemented for rings with 1 via 
1+1+...+1 (k times). 

RingElt map(RingElt a) returns a as an 
element of this ring. 

Here a belongs to another Ring object 
than this. This method is implemented 

in the case that a is an integer via 
addition 1+1+..+1 (a times) and in the 
case that a is a fraction p/q via div(). 

RingElt map(java.lang.String str) returns str as an 
element of this ring. 

The method responsible for input of 
ring elements. Most child classes will 

override this method using a parser 
that is appropriate for this specific 

ring. By default we parse for integers 
and fractions. 

RingElt map(java.lang.Object ob) maps the Object as 
an element of this 

ring. 

Works for classes 
java.math.BigInteger, java.lang.Ring 

and RingElt. Child classes may 
override this for other objects, e.g. 

matrices could accept two dimensional 
arrays as parameter. 

Table 2: Semi-abstract methods of the com.perisic.ring.Ring class 



3. Example: The Ring class of com.perisic.ring 
In order to gain a better understanding of the implementation of an abstract 
mathematical entity as an abstract class we now take a closer look at the 
implementation of the abstract class Ring within the com.perisic.ring Java package 
[9]. This package also contains child classes of the Ring class and an implementation 
of the RingElt class and is available free for educational purposes. The package has 
been designed so as to be suitable for use within a practical session to accompany a 
lecture on a relevant topic area as typically covered within Mathematics and 
Computer Science undergraduate curricula. The Ring class is in fact intended to serve 
as a reference implementation (exemplar) for other abstract structures such as groups, 
vector spaces, metric spaces etc. While syntactically we can distinguish between only 
abstract and non-abstract classes this distinction is in practice semantically too 
restrictive, as we encounter methods that have to be overridden in some cases only. 
We call these methods semi-abstract. In Java, semi-abstract methods are implemented 
as normal (non-abstract) methods.   
 
Tables 1-3 give an overview of all the methods that are presently available in the Ring 
class. The first column contains the method names and the second column presents 
some necessarily brief documentation of the method. The third column containing 
explanatory remarks seeks to emphasise the conceptual underpinnings that underlie 
the method in the context of object oriented design and mathematics.  
 
We conclude this section with a short overview of some of the child classes of the 
Ring class. The four classes in Table 4 below are to be instantiated with exactly one 
object (There is only one ring of integers, field of rationals, etc). This object can be 
directly referenced as a member of the Ring class. 
 

Method Documentation Comments/Discussion     
 RingElt sub(RingElt a, RingElt b) returns a – b Implemented as a + (-b) 
RingElt div(RingElt a, RingElt b) returns a /b  Implemented as a * (1/b) 
boolean equal(RingElt a, RingElt b) true if and only if 

a = b 
Implemented as a – b = 0. 

RingElt pow(RingElt a, int k) 
RingElt pow(RingElt a, 
                  java.math.BigInteger k) 

returns ak  Implemented using 
multiplication. 

RingElt evaluatePolynomial(  
                     RingElt p, RingElt a) 

returns the 
evaluation of the 
polynomial p at 
the element a. 

Implemented using basic 
arithmetic. 

 
Table 3:Implemented methods of the com.perisic.ring.Ring class 

Class name Description Referenced as 
IntegerRing Implements the integers Z via java.lang.BigInteger Ring.Z 
DoubleField The “field” of real numbers R approximated by the Java 

double type 
Ring.R 

F2Field The field of 2 elements F2. This is implemented as a wrapper 
of the type boolean. 

Ring.F2 

RationalField The rational numbers Q.  Ring.Q 
 
Table 4:Child classes of com.perisic.ring.Ring with exactly one object instance. 



The objects of the classes in Table 5 are constructed with a reference attribute to a 
Ring object R. 
 

 
4. Examples of student activities 

 
The package com.perisic.ring may be used as a useful reference model for the 
visualization of abstract mathematical entities (in this case an algebraic ring) in the 
form of abstract software classes. These abstract classes can made workable by 
deriving child classes and through the use of overriding methods. In the following two 
sections we attempt to give some ideas which might be helpful for developing 
practical sessions or projects for mathematical students using Java.  
 

4.1 Developing abstract classes 
• In a similar manner to the Ring class implemented within the package as 

previously described, an abstract class Group can be developed and evaluated. 
Here the abstract methods are the operation and the neutral element. 
Exponentiation can be implemented using several varieties of techniques 
found in literature such as [10]. For example some child classes of relevance 
to building ‘real’ applications could be (Z/nZ)* and the group of an elliptic 
curve. Advanced students could in this way be introduced to cryptographic 
algorithms that can be implemented for abstract (abelian) groups (cf. [11]).  

• A metric space could be implemented as an abstract class MetricSpace with an 
abstract method distance(). Then methods operating on a set of points such as 
computing the closest two points can be implemented via the distance() 
method, similar as the square() method is implemented via mult() for Ring.. 
Some suitable child classes might include: points on a plane, a three 
dimensional space, F2

n
, etc 

• Other mathematical structures that could be visualized as abstract classes in 
object oriented software include vector spaces, topological spaces, monoids, 
etc. 

 
4.2 Extending the com.perisic.ring package 

• Here our prime focus of attention will be the direct child classes of the Ring 
class. Small size projects could comprise a field of 4 or 9 elements, a wrapper 
class of Java's BigDecimal, or algebraic orders as Z[


������
 

Class name Description 
PolynomialRing Implements polynomials R[x] (where x can be any string).  
ModularRing Implements R/fR. Here R is a polynomial ring and f a polynomial. It is 

useful for instantiating algebraic extensions as objects. The 
com.perisic.ring package features also a subclass CyclotomicField for the 
implementation of cyclotomic fields (an algebraic extension of Q by an 
unit root) showing how the ModularRing class can be used.. 

QuotientField The field of fractions p/q with ����� � �������! #" Useful for rational function 
fields when R is a Polynomial Ring. 

 
Table 5: Child classes of com.perisic.ring.Ring that are quipped with a reference 
attribute to a Ring object R. 



• Algebraic extensions similar to the CyclotomicField class and 
UniversalCyclotomicField classes can be developed via the ModularRing 
class. The easiest example here being quadratic extensions. More advanced 
usage might include the implementation of infinite extensions, say the 
extension of Q by all square roots of primes. 

• Finite Fields as child classes of ModularRing. An interesting and challenging 
point here is the discussion of the uniqueness of finite fields: Each irreducible 
polynomial of a given degree leads to a “different” finite field, however they 
are all isomorphic. 

• Using an abstract class (finite, abelian) Group and Ring to implement a group 
ring.  

• Using the abstract class Ring for implementing a vector space over arbitrary 
fields. 

 
5. Conclusions 

 
We have identified and evaluated a fundamental relationship between object oriented 
techniques and Mathematical entities. Especially the concept of abstract classes can 
successfully be used as a visualization of abstract mathematical concepts such as 
“Ring”, “Group”, “Metric Space”, etc. The ubiquity of object oriented languages in 
undergraduate education strongly suggests to use these relationships to improve 
student conception in Computer Science/Mathematics undergraduate degree 
programs. As we have shown student activities could then include extensions of the 
Java package com.perisic.ring in the context of algebraic rings or the development of 
similar software for the implementation of other algebraic structures using 
com.perisic.ring as a reference model. 
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