
Using the Synergies Between the Object-Oriented Paradigm

Let Δ be an appropriate indexing set and for $d \in \Delta$:

 M_d a module.

$$\mathcal{E}_d \subseteq M_d$$
,

$$\mathbf{n}_d: \mathcal{E}_d \to \bigoplus_{t \in d} M_t$$
 a mapping.

Then we call the module $\mathcal{L} = N/Q$ wi

$$N = \bigoplus_{t \in \Delta} M_t$$

$$Q = \sum_{t \in \Delta} \langle r + \mathbf{n}_t(r); \ r \in \mathcal{E}_t \rangle$$

the combination of the system $\Gamma = (M_d, \mathcal{E}_d, \mathbf{n}_d)_{d \in \Delta}$.

Joint Mathematics/Computer Science Programs

Marc Conrad - Tim French University of Luton

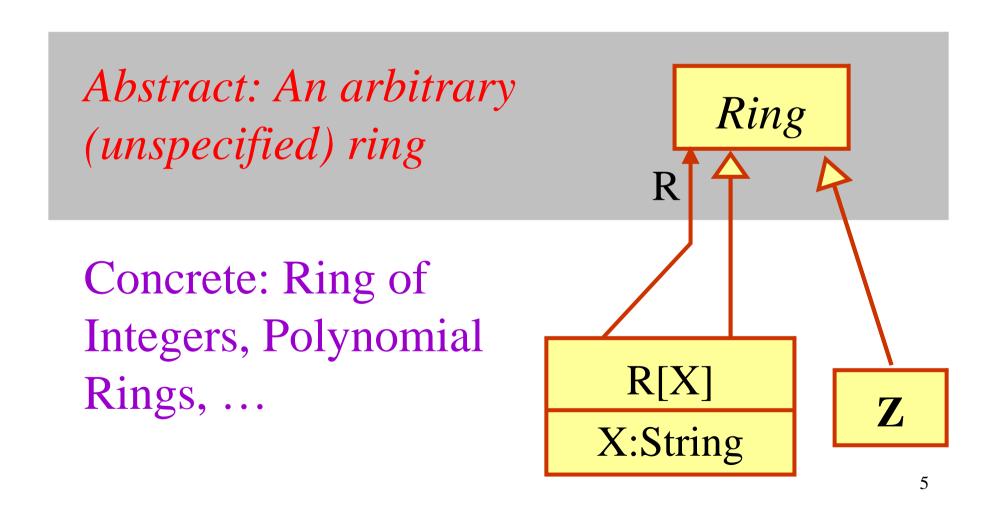
Mathematics and Software...

(a never ending story)

- Traditionally software has the role of a "tool" in teaching mathematics (if at all!)
- There are ongoing debates if and how these "tools" can be used.
- We go further:
- Object oriented software
 can play a crucial role in
 visualising and understanding
 of Mathematics

The Object Oriented Paradigm...

(Java everywhere)


- Object oriented languages as Java, C++, C# are the main languages Computer Science students encounter during undergraduate courses.
- Students accumulate knowledge of object orientation
- This can be linked to Mathematics:
- Object oriented knowledge can be used as a basis for learning and teaching of Mathematics

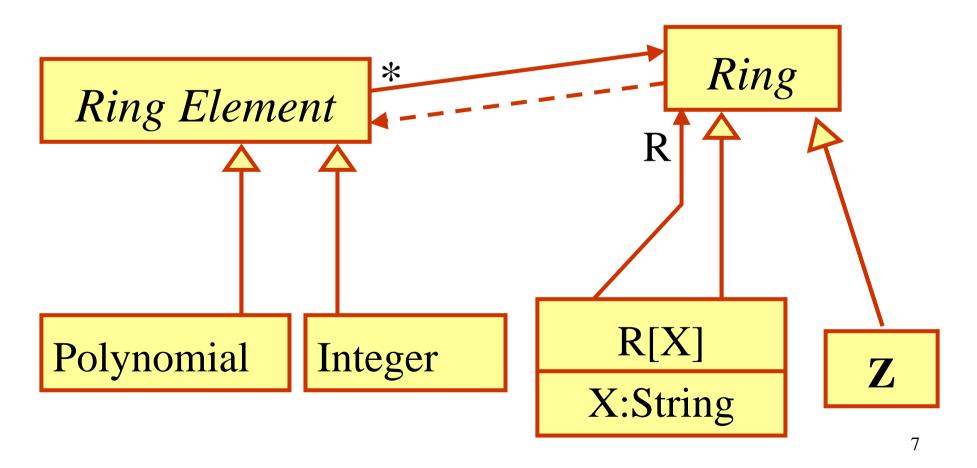
Axiomatic Mathematics...

(Computers and pure mathematics?)

- Mathematical software is traditionally used for number crunching, solving of equation systems, etc.
- "Pure" mathematics has been so far addressed only in research context (theorem proving, ...)
- *We believe that we can do better:*
- Pure mathematics can be modelled and implemented via object oriented languages as Java, C#, or C++

Abstract Structures are modelled as abstract classes.

Axiomatic definitions are implemented as abstract methods.


Example:

Ring

- Abstract:
 - addition
 - negation
 - multiplication
 - inversion
 - "zero"
 - one"
 - check if zero

- Not abstract:
 - subtraction
 - exponentiation
 - embedding of Z and Q
 - Check for equality
 - evaluation of polynomials

Use the GoF Mediator pattern for Implementing Abstract Mathematics.

The com.perisic.ring package provides the following classes:

 Rings, Polynomial Rings, Integers, Rational Functions, Algebraic Extensions, Cyclotomic Fields, Universal Rings, etc.

The com.perisic.ring package can serve as a reference model for:

 groups, metric spaces, topological spaces, group rings, etc.

Example of student activities:

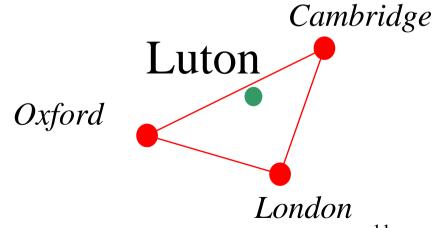
- Using the Java com.perisic.ring package as a reference model implement an abstract class metric space with an abstract method distance().
- In the abstract class implement applications (e.g. closest two points,...)
- Implement child classes: points on a plane, three dimensional space, \mathbf{F}_{2}^{n} ,...

Further Reading

- The Java package com.perisic.ring is available at: http://ring.perisic.com
- M. Conrad, T. French, Exploring the synergies between the Object-Oriented paradigm and Mathematics: A Java led approach, to appear in Int. J. Math. Educ. Sci. Technol.
- M. Conrad, T. French, C. Maple, S. Pott, Mathematical Use Cases lead naturally to nonstandard Inheritance Relationships – How to make them accessible in a mainstream language?, MASPEGHI 2004 (WS 12 of ECOOP)

Contact

- Marc Conrad
 - marc.conrad@luton.ac.uk
- Tim French
 - tim.french@luton.ac.uk


University of Luton

Dept. of Computing and IT

Park Square

Luton LU1 3JU

United Kingdom

